Signals, systems, acoustics and the ear

Week 1

Introduction

No eating or drinking in the lab! Not even water

You may find this course demanding! How to get through it:

- Consult the web site
- Essential to do the reading and suggested exercises
 - Rosen, S., and Howell, P. (2010). Signals and Systems for Speech and Hearing, 2nd edition: Brill, Leiden.
- Laboratory sessions go a long way to clarify the material presented
- Bring questions to the tutorial sessions
- Send questions to the staff through Moodle
- Keep up with the work
- If you have problems, *ask for help!*
- If you can do the course work and exercises, you will do well on the exam ...
 - if you cannot, you will not!
- You are responsible for bringing printed-out notes to class, if you want to.
 - Made available on the web site on Friday prior to the lecture at the latest
 - Lab sheets will be provided, so you need not print them

People

- Andrew Clark
 - Experimental Officer, will help out in lab, as will ...
- Kurt Steinmetzger
 PhD student
- Dave Cushing
 - Experimental Officer who looks after the lab

Timetable

UCL Week	Date Monday	Lecture topic	Laboratory/other	CW (for following week)
6	5 Oct	Waveforms, signals, sinusoids, frequency, logarithms, dB, digital signals	Pure tone audiometry & decibels	Set I
7	12 Oct	More about waves and dB; Properties of LTI systems (i/o functions, linearity, time-invariance); The BIG idea	Frequency response of an acoustic resonator: two different sizes	Set II
8	19 Oct	Frequency responses & Spectra	Harmonic synthesis (<i>Esynth</i>)	Set III
9	26 Oct	Signals through systems; Filter banks	Signals through systems: analogue & digital (<i>Esystem</i>)	Set IV
10	2 Nov	The ear as a signal processor	Cochlear simulation	
11	9 Nov	Reading week: no meeting		
12	16 Nov	Frequency selectivity in the periphery and in perception	Notched-noise masking	
13	23 Nov	Envelope & temporal fine structure	Adaptive techniques	Choose an appropriate paper and email it to me
14	30 Nov	Binaural hearing; Pitch perception	Measuring F0 in various sounds	Journal article approved
15	7 Dec	Intensity & Loudness; Temporal resolution	Critique journalistic essays	Bring in first draft of essay
16	14 Dec	Psychoacoustics of hearing impairment; perceiving speech-in- noise	Speech-in-noise	Hand in final essay

Acoustics, signals & systems for audiology

Week 1

Signals (& Systems)

What are systems & signals?

- Systems perform an operation on, or transformation of, a signal (or waveform)
- Concentrate on systems with one input and one output
- Many useful examples in hearing and speech science

System = In-The-Ear Hearing Aid

input = sound wave
(variations in pressure)

output = sound wave
(modified in some way)

- ① Microphone
- ② Battery compartment and programming socket
- ③ Custom made shell
- ④ Receiver
- ⑤ Removal thread

System = ear canal

Input and output signals are both sound waves

System = middle ear

Input and output signals are both *mechanical* waves (movements)

Tell me some others!

Sound is oscillation of air pressure (pressure wave).

high pressure: air molecules bunched up low pressure: air molecules spread out

Air molecules do **not** travel through space to carry sound

Sound is one kind of signal

Imagine measuring the instantaneous pressure at a single place

A microphone converts variations in sound pressure to electrical variations in voltage

A very simple signal

(but every signal we work with can be drawn on the same kind of graph)

Essential characteristics of sinusoids

- Sinusoids are a *unique* shape
 - not just any vaguely regular form
 - are *periodic*
 - a basic cycle repeats over and over
 - can be constructed from *uniform* circular motion

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/ClassMechanics/Circular2SHM/Circular2SHM.html

Sinusoids can only differ in three ways

- Once you know a wave is sinusoidal, there are only three things to know about it:
 - frequency
 - amplitude
 - phase
 - generally less important because phase changes are typically not perceived

I: Phase

- Where a sinewave *starts* relative to some arbitrary time
- Measured in cycles or degrees (or radians) $360^{\circ} = 1 \text{ period} = 2\pi \text{ rads}$ $180^{\circ} = \frac{1}{2} \text{ period} = \pi \text{ rads}$ $90^{\circ} = \frac{1}{4} \text{ period} = \pi/2 \text{ rads}$
- Equivalent to a shift in time
- Relatively little effect on perception but still important in many situations

II: Periodicity (frequency)

Specifying periodicity

- The period (*p*) is the time to complete one *cycle* of the wave
- Alternatively, the number of cycles that are completed in one second, is the *frequency (f)*
- *f*=1/*p* and *p*=1/*f*
 - here =1/0.00227 sec = 440 cycles per second (cps)
- But a special unit name is used ...

hertz (Hz): a measure of frequency

DROPPINGS The men and women who laid down their names for science Caplin and Jeremy

Keep your units consistent!

- period of 0.001 sec = 1 ms (millisecond)
 so:
- period in seconds: f (Hz)=1/p (s)
- period in ms: f (Hz)=1000/p (ms)
- period in ms: f (kHz) =1/p (ms)
- A period of 1 ms = ?? Hz
- A frequency of 100 Hz = ?? ms

Increases in frequency (decreases in period) lead to increases in subjective pitch

III: Amplitude

Increases in amplitude lead to increases in perceived loudness

Measures of amplitude

- It is crucial to distinguish instantaneous measures (as in a waveform) from some kind of average
- Instantaneous measures always linear (e.g., pressure in Pa, voltage in V, displacement in metres)
- But also want a single number to be a good summary of the 'size' of a wave
- Average measures can be linear or logarithmic (dB)

Simple measures of amplitude

Drawback to peak measures

 Don't accurately reflect the energy in a waveform

root-mean-square (rms)

- Square all the values of the wave
- Take the average area under the curve
- Take the square root
- A measure of the *energy*, applicable to all waveforms
- Still a *linear* measure (Pa, mm, V)

Scaling amplitude: The decibel Scale Idea I: Define a point of reference and rescale data in terms of that reference

Idea II: Use a kind of warped scale that relates to perception

Sound Pressure Level

Intensity(*dBSPL*) =
$$20 \log_{10} \left(\frac{\text{Pressure}(Pa)}{20 \mu Pa} \right)$$

- **20µPa** is the standard reference pressure
 - approximately equal to human threshold
- log₁₀(ratio) turns ratio into power of 10.

Measuring amplitudes with dB

- Not a linear unit like pascals
- A logarithmic measure with an arbitrary reference point
 - O dB does not mean no sound; it means the same level as the reference
 - Any positive number of dB means greater than the reference (e.g., 10 dB)
 - Any negative number of dB means less than the reference (e.g., -10 dB)
- Many different kinds of dB (SPL, HL, ...) which differ essentially in the meaning of 0 dB.

Sound Pressure Level

Intensity(*dBSPL*) =
$$20 \log_{10} \left(\frac{\text{Pressure}(Pa)}{20 \mu Pa} \right)$$

- 20µPa is standard reference pressure
 - approximately equal to human threshold
- log₁₀(ratio) turns ratio into power of 10.

dB SPL Examples

- Threshold of Hearing (20 µPa) 20 × log₁₀(20 µPa/20 µPa) = 20 × log₁₀(1) = 20 × 0 = 0 dB SPL
 Distinct Pain! (200 Pa)
 - Distinct Pairis (200 Pa) $20 \times \log_{10}(200 \text{ Pa}/20 \ \mu\text{Pa})$ $= 20 \times \log_{10}(10000000) = 20 \times 7$ = 140 dB SPL
- An inaudible sound (2 μ Pa) 20 × log₁₀(2 μ Pa /20 μ Pa) = 20 × log₁₀(0.1) = 20 × -1 = -20 dB SPL

Why use a logarithmic unit (dB)?

- Waveform amplitudes *can* be specified in linear rms units and often are,
- But our perception of changes in sound amplitude is more closely related to a logarithmic scale (based on ratios/proportions)
- Compare distinguishing a 1 kHz sinusoid of 50 μ Pa vs. 100 μ Pa (obvious change)
- And 1 Pa to (1 Pa + 50 μ Pa) = 1.00005 Pa (indistinguishable)
- Equal steps on a dB scale correspond to equal *ratios* on the linear scale

Just-noticeable difference in intensity is about 1 dB

- Standard
- I-dB less intense

• 3-dB less intense

• 6-dB less intense

• 10-dB less intense

dB scales are used widely

- dB can be used for any amplitude measure as long as a reference is defined.
- dB re 1 mV = 20 * log₁₀(x mV/1 mV) where x is any number
- 1 V = 20 * log₁₀(1000 mV/1 mV) = 60 dB re 1 mV
- $1 V = 20 * \log_{10}(1 V/1 V) = 0 dB re 1 V$
- Can use dB for displacement (meters), current (amps), etc.
- Can use dB for sound pressure but a different reference in place of 20 μPa

Getting a feel for decibels (dB SPL)

Human hearing for sinusoids

Thresholds for different mammals

Interlude: Go back to the lab sheet concerning audiometry

Signals as waveforms

A graph of the *instantaneous* value of amplitude over time

x-axis is always time (s, ms, μs)

 y-axis always a *linear instantaneous* amplitude measure (Pa, mPa, μPa, V, m)

Waveforms are of two major types: periodic and aperiodic

- Periodic waveforms
 - Consist of a basic unit or cycle ...
 - that repeats in time ...
 - typically have a strong pitch ...
 - and also come in two types

Waveforms are of two major types: periodic and aperiodic

- Aperiodic waveforms
 - do not repeat ...
 - and also come in two types (but the distinction is not so important as for periodic waves)

A variety of waveforms

Digital signals

How can we store a waveform on a computer, when a computer can only store a list of numbers?

Digital signals

- How do we go from an *analogue* waveform (like a real sound) to a *digital* one (on a computer)
- Two problems
 - Analogue waveforms exist at infinite points in time (x-axis)
 - Analogue waveforms have amplitude values (usually) with an infinite number of decimal places (y-axis)
- So a waveform has to be converted in some way in order to represent it as a list of numbers
 - On the x-axis : sample
 - On the y-axis : quantise

The rules for sampling and quantisation

- Sampling needs only be twice the rate of the highest frequency component in the signal
 - and going to higher sampling rates doesn't help
- Quantisation keep improving as more discrete levels (number of bits) is allowed
 - but 16-24 bits is probably enough for audio applications
- Windows standard is 16 bits at 44.1 kHz
- mp3 requires an additional (and complex) processing step!

The End